Downregulation of Carnitine Acyl-Carnitine Translocase by miRNAs 132 and 212 Amplifies Glucose-Stimulated Insulin Secretion
نویسندگان
چکیده
We previously demonstrated that micro-RNAs (miRNAs) 132 and 212 are differentially upregulated in response to obesity in two mouse strains that differ in their susceptibility to obesity-induced diabetes. Here we show the overexpression of miRNAs 132 and 212 enhances insulin secretion (IS) in response to glucose and other secretagogues including nonfuel stimuli. We determined that carnitine acyl-carnitine translocase (CACT; Slc25a20) is a direct target of these miRNAs. CACT is responsible for transporting long-chain acyl-carnitines into the mitochondria for β-oxidation. Small interfering RNA-mediated knockdown of CACT in β-cells led to the accumulation of fatty acyl-carnitines and enhanced IS. The addition of long-chain fatty acyl-carnitines promoted IS from rat insulinoma β-cells (INS-1) as well as primary mouse islets. The effect on INS-1 cells was augmented in response to suppression of CACT. A nonhydrolyzable ether analog of palmitoyl-carnitine stimulated IS, showing that β-oxidation of palmitoyl-carnitine is not required for its stimulation of IS. These studies establish a link between miRNA-dependent regulation of CACT and fatty acyl-carnitine-mediated regulation of IS.
منابع مشابه
A mitochondrial carnitine acylcarnitine translocase system.
Acetylation of added (-)carnitine by heart mitochondira coupled to the oxidation of pyruvate in the presence of malonate was inhibited, apparently competitively, by long chain acyl(+)carnitines although the activity of carnitine acetyltransferase (EC 2.3.1.7) itself was not affected. Mitochondria have been found to possess a translocase system that allows the transport of carnitine and acylcarn...
متن کاملAlteration of the malonyl-CoA/carnitine palmitoyltransferase I interaction in the beta-cell impairs glucose-induced insulin secretion.
Carnitine palmitoyltransferase I, which is expressed in the pancreas as the liver isoform (LCPTI), catalyzes the rate-limiting step in the transport of fatty acids into the mitochondria for their oxidation. Malonyl-CoA derived from glucose metabolism regulates fatty acid oxidation by inhibiting LCPTI. To examine directly whether the availability of long-chain fatty acyl-CoA (LC-CoA) affects the...
متن کاملThe long-chain acylcarnitine (LCAC) products of CPT1 are transported across the inner mitochondrial membrane by carnitine acylcarnitine translocase and then converted back to LCACoAs by carnitine palimitoyltransferase
Journal of Lipid Research Volume 55, 2014 635 Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc. L -Carnitine is a conditionally essential nutrient that serves as a substrate for a family of acyltransferase enzymes that catalyze the interconversion of acyl-CoAs and acylcarnitines. Unlike their acyl-CoA precursors, acylcarnitines can be transported across cellu...
متن کاملCharacterization of carnitine acylcarnitine translocase system of heart mitochondria.
Mersalyl inhibited the respiration of heart mitochondria under conditions that required the transport of (-)-carnitine and acyl(-)-carnitines. The exchange of external carnitine and acylcarnitines for intramitochondrial carnitine was also inhibited by mersalyl and 1 mM mersalyl proved suitable for the inhibitor-stop assay of carnitine acylcarnitine translocase. The carnitine-carnitine and (-)-c...
متن کاملExpression of PPARα modifies fatty acid effects on insulin secretion in uncoupling protein-2 knockout mice
AIMS/HYPOTHESIS In uncoupling protein-2 (UCP2) knockout (KO) mice, protection of beta cells from fatty acid exposure is dependent upon transcriptional events mediated by peroxisome proliferator-activated receptor-alpha (PPARalpha). METHODS PPARalpha expression was reduced in isolated islets from UCP2KO and wild-type (WT) mice with siRNA for PPARalpha (siPPARalpha) overnight. Some islets were ...
متن کامل